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ABSTRACT

In this paper we describe a technique for efficient paralleliza-
tion of digital wave guide network (DWN) models based
on an interpretation of the finite difference time domain
(FDTD) method for discrete event simulation. Modeling
methodologies based on FDTD approaches are typically
constrained in both the spatial and time domains. This
interpretation for discrete event simulation allows us to in-
vestigate the performance of DWN models in the context
of optimistic parallel discrete event simulation employing
reverse computation for rollback support. We present par-
allel performance results for a large-scale simulation of a
3D battlefield scenario, 100km? and at a height of 100m
with a resolution of 100m in the X-, Y-planes, and 10m in
the Z-plane for 754 simultaneous radio wave transmissions.

1 INTRODUCTION

Parallel discrete event simulation (PDES) technology has
been employed successfully over the last 30 years to im-
prove the performance of many modeling methodologies.
Recently, researchers in this field have begun to investigate
the efficacy of PDES as applied to modeling physical sys-
tems. Common approaches to modeling physical systems
include, but are not limited to, ray-tracing and the finite
difference time domain (FDTD) methods. However these
methods traditionally have not benefitted from discrete event
simulation because of constraints in the spatial and time
domains, related to each method. For example, the FDTD
method is limited by the Courant-Lewy-Friedrichs (CFL)
condition (Courant, Friedrichs, and Lewy 1928, Courant,
Friedrichs, and Lewy 1967).

In the past few years, researchers have begun to adapt
these methods to the discrete event paradigm. Notably, a
2005 study applied discrete event simulation to the particle-
in-cell (PIC) method (Karimabadi et al. 2005) and achieved
a two order of magnitude increase in performance. The PIC
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method has a long history, reviewed in Birdsall (1991), and
is commonly used in the area of plasma physics. The
break-through in this approach was the removal of the CFL
constraint, which allowed for a two order of magnitude
improvement of the runtime. This interpretation was then
studied in the context of parallel discrete event simulation
by Tang et al. (2006) for a 1D spacecraft model, which
improved the performance by an additional order of mag-
nitude.

In 2006, James Nutaro published a study adapting the
FDTD method with respect to digital wave guide network
wave simulation to the discrete event paradigm. Here,
the focus was on the propagation of electromagnetic waves
through a complex 3D environment. A formal description of
the algorithm was defined for discrete event systems. Nutaro
indicated greater than an order of magnitude improvement
in the cost of computation over the FDTD method, for
high resolution 3D models of Digital Waveguide Networks
(DWN).

In this paper we apply the formal model outlined in
Nutaro (2006) to the PDES paradigm, specifically optimistic
synchronization enabled by reverse computation. We chose
this method to study because the algorithm allowed for reso-
Iutions independent of the wavelength of the electromagnetic
waves modeled. Our challenge is to apply this method to
a DWN physical simulation for battlefield scenarios where
the scale of the environment (100km long X 100km wide
X 100m in height) is large and where the number of radio
wave transmissions is large, in this case 754 simultaneous
wave transmissions.

The main contribution of our work is the application of
the Event-Based Transmission Line Matrix (ETLM) mod-
eling method to the area of PDES known as optimistic
simulation. Optimistic synchronization was first proposed
by Jefferson (1985) and allows as fast as possible event
execution where violations of the causality constraint may
occur. Where violations occur, the causality constraint is
then preserved by rolling back improperly processed events,
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restoring model state prior to the violation, and then allowing
processing to resume.

Initial implementations of the rollback mechanism fo-
cused on storing model entity or logical process (LP) states.
During rollback, these states could then be recalled prior
to the causal violation, ensuring proper execution of the
model. Initially, copy-state saving was employed, whereby
an LPs entire state would be stored for each event processed
by an LP. Improvements were soon introduced, such as in-
cremental state-saving, where only the LPs modified state
variables were stored for each event processed. Infrequent
state-saving attempted to reduce the amount of memory
consumed to support rollback by decreasing the frequency
of LP state-saving.

Advances in PDES and optimistic synchronization have
recently focused on a relatively new approach to supporting
rollback, reverse computation. Here, rollback is supported
by performing the inverse operations on an LPs state for
each event processed. This approach has been employed
successfully in a variety of modeling contexts, and the main
benefit is that memory is not typically not consumed storing
individual LP states. One trade-off with this approach is
that the computational costs associated with reverse com-
putation can be high compared to state-saving. Second,
some operations may not be reverse-computable without
the loss of data in the model. These types of operations are
known as destructive statements, and one example would
be floating point operations.

The paper is organized as follows: we outline previous
work in this area in Section 2. We provide the details of
the Event-Based Transmission Line Matrix (ETLM) mod-
eling method and the parallel, reverse computable model in
Section 3. We perform a performance study in Section 4.
Our summary of the paper is given in Section 5 and Future
Work is indicated in Section 6.

2 RELATED WORK

In the seventeenth century Issak Newton proposed a cor-
puscular model for the phenomena of light. In the same
century, Christian Huygens proposed a model of light based
on wave propagation. Quantum physics indicates that the
models are compatible; that light in particular, and elec-
tromagnetic radiation in general, possesses both granular
(photons) and wave properties. For electromagnetic ra-
diation occurring a microwave frequencies, the physical
properties exhibited by the wave model dominates to de-
termine the effects of propagation and scattering. In 1971,
Johns and Beurle (1971) proposed a numerical modeling
technique based on Huygen’s model for solving 2-D scatter-
ing problems. This work was followed up with extensions
to three dimensions and the concept of dielectric loading
(Akhtarzed and Johns 1975, Johns 1974c, Johns 1974b,
Akhtarzad and Johns 1974). Numerous researchers since
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have added features and extended the method to include
concepts such as variable mesh size, simplified nodes, error
correction techniques, and anisotropic media. The TLM
algorithm was outlined concisely in Johns (1974a), and a
subsequent analysis of the theory and applications of TLM
are outlined in Hoefer (1985).

To date, we are aware of two modeling methods for phys-
ical systems that have been interpreted for the discrete event
paradigm: particle-in-cell (PIC) and Event-Based Transmis-
sion Line Matrix (ETLM). The PIC method is derived from
the numerical method called finite difference time domain
or FDTD (Shlager and Schneider 1995). This approach is
commonly used when modeling physical systems because
it is highly accurate and provides a bounding of the er-
ror in the computed result. This error is related to the
representation of the environmental space in the model as
a multi-dimensional grid. The spacing between points in
the grid determines the unknown quantities and generates
the error bounds for the given data. While this method is
capable of generating very precise results (e.g., using small
grid-spacings), an unknown amount error is introduced by
the input representation of the environmental space.

The PIC method has a long history going back over 40
years and is outlined well in Birdsall (1991). Interestingly,
this idea was conceived for discrete models. In practice, this
approach is most commonly encoded as a time-stepped sim-
ulation, possibly because of the simplicity of time-stepped
simulation systems. While this method has a long history,
it was not until 2005 that it was interpreted for the discrete
event paradigm in Karimabadi et al. (2005). The major
impact of this work is that the Courant-Levy-Freidrichs
condition does not apply in the context of the asynchronous
PIC-DES method. This allowed for a two order of magni-
tude improvement in the runtime of a 1-dimensional model
of a spacecraft interacting with the solar winds.

In concert, Tang et al. (2006) implemented this model in
an optimistic parallel discrete event simulation that employed
reverse computation for rollback. Nearly another order of
magnitude improvement in the runtime of the model was
seen utilizing 8 processors.

The second interpretation of a numerical method for
physical systems for DES is called Event-Based Transmis-
sion Line Matrix or ETLM. This method has been used to
study both fire-spreading (Muzy et al. 2005) as well as
electromagnetic wave propagation (Kuruganti and Nutaro
2006). This method is based on a discrete approximation
of a continuous structure. This relaxes the constraint on the
distance that can be used between points in the grid used
to model the spatial domain. Consideration of the grid cell
spacing must be considered in the computation of the wave
velocity when the wavelengths are either much larger, or
much smaller than the spacing.

A validation study was performed in Kuruganti and
Nutaro (2006) for electromagnetic (EM) wave propagation
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using ETLM. The experiment was configured with a single
transmitter placed on one side of a laboratory, and 90
receivers in a line on the other side. The transmitter signal
was then calibrated and measured at each receiver and
recorded. Then the room was modeled in 3D, and the
experiment was conducted in simulation. The measured
results were then compared for accuracy against the ETLM
model and a ray-tracing simulation result based on ray-
tracing. The results established ETLM as a highly accurate
method for EM wave propagation. More importantly, the
performance of the ETLM was shown to increase as the
environment became increasingly cluttered, and that the
ETLM method did not suffer from the number of receivers
contained in the model. Conversely, it is well understood
that ray-tracing complexity increases linearly with respect
to the number of receivers, and quadratically with respect
to the number of elements in the environment.

Nearly as fast as these methodologies are being in-
terpreted for the discrete event paradigm, researchers in
PDES are investigating the degree to which they can be
parallelized. PDES can be generally categorized in terms
of two major processor synchronization methods known as
conservative and optimistic.

The Time Warp mechanism outlined in Jefferson (1985)
described for the first time the optimistic synchronization
protocol and rollback mechanism. Traditionally, state-
saving has been employed as the rollback mechanism,
outlined by the numerous studies in this area. The ma-
jor approaches to rollback mechanisms include copy state
saving, incremental state-saving (Steinman 1993, Gomes
1996), and a large amount of effort has been expended
on infrequent state saving (Lin and Preiss 1991, Lin et al.
1993, Fleischmann and Wilsey 1995).

More recently, the technique of reverse computation
has been suggested as an approach to rollback that does not
rely on storing state information (Carothers, Perumalla, and
Fujimoto 1999). Here, LP states are restored by computing
the inverse operations for each improperly executed event
processed. Several reverse computation models have been
designed for a variety of models, including communications
network modeling (Yaun et al. 2003, Yaun, Carothers,
and Kalyanaraman 2003, Bauer et al. 2006), and physical
systems (Tang et al. 2006). Additional optimizations for
reducing memory consumption related to the storing of
processed events was proposed in Bauer and Page (2007)
for reverse computation and Li and Tropper (2004) for
state-saving.

3 MODELING METHOD

In this section we outline the Event-Based Transmission
Line Matrix modeling method, and the approach taken for
parallelization using the reverse computation technique for
rollback in a Time Warp simulator. The formal model
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description provided here is related entirely from Nutaro
(2006). Those seeking details on how the DES-TLM method
was derived from numerical methods are strongly encour-
aged to review this previous work. A high level overview
of the model is presented for the purpose of understanding
how the model is implemented in a parallel discrete event
simulator.

3.1 Event-Based Transmission Line Matrix Model

The Event-Based Transmission Line Matrix (ETLM) mod-
eling method requires two main components in order to
perform wave propagation, relating to the time and spatial
domains of the modeled physical system. First, a discrete
representation of the spatial environment modeled must be
formed. This is performed by conceptualizing the environ-
mental space as a dimensional grid over the environment.
This grid may be homogenous or inhomogeneous in terms
of dielectric constants and/or resolution. The second main
component is the algorithm for scatter-gather of the electro-
magnetic fields for a point in the grid and includes all of the
computations related to wave propagation and attenuation:
velocity, impedance, amplitude and wavelength and where
the material bulk modulus and density are specified for each
point in the grid.

Within any homogenous region of the grid, the struc-
tural and numerical properties of the digital wave guide
network are preserved. At the interface between two dis-
parate homogenous regions, waves are both transmitted and
reflected. Both the transmitted and reflected waves share
the same frequency, though their amplitudes and velocities
are defined by their respective homogenous regions. Special
care must be taken at material interfaces to ensure proper
wave propagation through each region, and so a “junction”
model is specified at interfaces. The junction model ensures
that waves are sampled consistently for the varying time
domains on either side of the interface (as dictated by the
wavelength).

The scatter-gather algorithm is propagates a wave
through the spatial grid elements. The external transition
function defined in Nutaro (2006), Formula 36, describes
how energy is gathered at a grid cell. The total energy at a
cell at time ¢ is defined as the sum of the attenuated wave
amplitudes incident upon a cell in all dimensions at time .
The time advance function for a cell is defined as infinite
if the energy value at a cell is zero, d/V otherwise, where
d is the cell grid spacing and V is the wave velocity and
d > A (where A is the wavelength).

Once the time advance has expired, the cell is then
responsible for scattering the energy contained therein to
the surrounding cells (Formula 38 in Nutaro 2006). The
stored energy is attenuated for the current cell, and scattered
equally in all dimensions except for those directions from
which input energy was received. In the directions where
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Algorithm 1 LP input energy event handling. Each dimen-
sion must be updated for the time advance caused by the
incident wave. The spatial offset timestamp ¢s is determined
by the grid spacing for the dimensional plane divided by
the incident wave velocity d/V.

Steps to Handle Input Energy Displacement at a Cell
for each dimension, d

if no time advance set

set time advance[d] to spatial ts

stored energy += input energy

energy was received, the total output energy is reduced by
the incoming energy for that direction. For example, in a
1-D homogenous model, energy traveling from the left to
the right, and arriving at a given cell should be scattered in
all directions. However, the scattering of the energy back
to the left is reduced by exactly the same amount of energy
as received from the left neighbor. Therefore, the amount
of energy to be scattered to the left is zero, and the wave
continues propagation to the right.

3.2 Parallel Simulation

At each dimensional intersection within the grid, an LP is
defined and performs the scatter-gather algorithm. While
junction LPs can be defined between inhomogeneous grid
regions, for simplicity we model a complex 3-D terrain
environment for the ground plane only. This simplification
allows us to ignore transmitted waves (e.g., into the Earth)
and focus solely on the main algorithm.

Each LP state contains an array storing the incoming
energy displacement values by direction, and the size of the
array is twice the number of dimensions modeled (corre-
sponding to the directions -X, +X, -Y, +Y and -Z, +Z within
a 3-dimensional environment). Because the grid may be
heterogenous in scale in different dimensions, we also store
the time advance values in an array sized by the number
of dimensions. A field for storing the total displacement is
also used. The intersection of 2 or more dimensions in the
grid defines a grid cell LP that implements the scatter-gather
algorithm.

There are two types of events handled by the LP, in-
put energy displacement values and time advance requests.
Upon receiving a displacement from a neighbor, the dis-
placement array stores the incident wave energy, and updates
the time advance value for each dimension. Finally, the total
energy displacement for the cell is updated, as shown in
Algorithm 1.

Upon receiving a time advance request, the LP event
handler must then determine the corresponding energy values
to propagate for each dimension, as shown in Algorithm 2.
The LP first attenuates the energy stored at the cell accord-
ing to the grid cell dielectric constants. If an attenuation
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Algorithm 2 LP time advance event handling. First the
stored energy amplitude attenuates with respect to the ma-
terial dielectric constants and the cell spacing. If the result is
above the threshold, then the scattering model is performed.
Energy is displaced in all directions, minus any input dis-
placements, if and only if the final displacement in any
one direction continues to be above the threshold. Finally,
the LP state variables are reset to their resting positions,
which may be zero, or contain a distribution representing
background noise.

Steps to Handle Time Advance Event

stored energy x= wave loss coefficient

if stored energy < attentuation threshold
done

for each direction, d
{

displacement = (spatial coeff =
stored energy) -

stored displacement [d]
if displacement >= attenuation threshold

send displacement in direction d

reset stored energy
reset directional displacements

threshold is defined and met, no energy is propagated. Oth-
erwise, propagation begins on a per dimension basis. Each
dimension has a corresponding spatial coefficient that mod-
ifies the propagated energy value based on the total number
of dimensions. The incident energy for a direction is then
subtracted from the energy value. If the resulting energy
value is above a defined threshold for a direction, then that
value is propagated to the neighboring LP in that direction.

At the completion of a time advance request, the cell’s
total displacement is reduced by the amount of the dis-
placement that generated the request. In our particular
scenario, all transmissions have the same properties (i.e.,
frequency and simultaneous transmission). Therefore, the
time advance requests in the grid are synchronized in time
(simultaneous transmissions), and the total cell displacement
and directional replacements may be simply restored to the
steady state (i.e., no displacement from a transmission, but
possibly background noise).

3.3 Reverse Computation

As noted in Carothers, Perumalla, and Fujimoto (1999),
the key property that reverse computation exploits is that
a majority of the operations that modify the state variables
are “constructive” in nature. That is, the undo operation for
such operations requires no history. Only the most current
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values of the variables are required to undo the operation.
For example, operators such as ++, —, +=, -=, *= and /=
belong to this category. Note, that the *= and /= operators
require special treatment in the case of multiply or divide
by zero, and overflow/underflow conditions. More complex
operations such as circular shift (swap being a special case),
and certain classes of random number generation also belong
here.

Operations of the form a = b, floating point operations,
modulo and bit-wise computations that result in the loss of
data, are termed to be destructive. Typically these opera-
tions can only be restored using conventional state-saving
techniques. However, we observe that many of these de-
structive operations are a consequence of the arrival of data
contained within the event being processed. Frequently we
can make use of the swap operation to make this operation
reversible by swapping LP state variables with variables
stored in the events, avoiding resorting to the state-saving
technique.

The reverse computation for the pseudo-code presented
in Algorithms 1 and 2 is rather straightforward. Many of
the operations applied to the LP state are floating point
precision, and therefore destructive. The approach we take
here is to swap the LP state variable being destroyed with
the incoming message data area in the event.

Reverse computing the portion of the LP state needed
to compute the time advance function is even simpler. A
high level examination of the model indicates that all waves
in an homogenous region have the same frequency. This
simplifying assumption indicates that all waves also have the
same wavelength. So no computation need be performed,
as the time advance variables are simply reset to infinity.

We do not need to be concerned with reverse computing
LP state variables to handle the case where multiple waves
occur at a cell, since they would occur simultaneously.
The rollback mechanism is required to rollback each wave
incident at a cell for an instant in time, the effect of which
is to return the cell to equilibrium (i.e., no energy).

4 PERFORMANCE STUDY

In this section we outline the computing testbed used to per-
form experiments. We also outline the model scenario used,
and the performance achieved across multiple processors.

4.1 Computing Testbed

All experiments were conducted on the MITRE Corporation
“Hive” Cluster that contains 35 compute nodes, or “drones”.
Each Hive compute node is a dual-processor, dual-core
AMD Opteron server configured with 2.2 GHz processors
and 8.192 GBs of RAM. The AMD Opteron 2000-series chip
enables 64-bit computing, and provides up to 24GB/s peak
bandwidth per processor using HyperTransport technology.
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The DDR2 memory controller is 128-bits wide and provides
up to 6.4GB/s of bandwidth per processor. Our RAM
configuration consisted of a 4 x 2.048GB configuration
of 667MHz DDR2 ECC RAM modules. The network
interconnect used was a Cisco 48-port GbE switch.

4.2 Simulator Setup

The simulation executive was configured using the perfor-
mance tuning parameters listed in Table 1. Because of
the large amount of memory consumed by the 10 million
grid LPs, optimistic event memory was constrained by the
following equation:

[nLP/nCPU| % C (1)
where C was set to 1.2, or 20% more than the sequential
case requires.

Table 1: Simulator input parameters.

Value
1024 events

Parameter

Batch Loop Size
Fujimoto GVT Interval 32 batch loops
7 O’Clock GVT Interval 0.001 secs
Kernel Processes 8

GVT batch and interval parameters were set at 1024
and 32 respectively. Thus, up to 32,768 events will be pro-
cessed per processor between GVT epochs. These settings
where experimentally determined to yield the highest level
of performance for the model for a particular computing
testbed.

The simulator used was ROSS which employs Fuji-
moto’s GVT algorithm for shared memory multiprocessors
when executed on a single compute node, and the Seven
O’clock GVT algorithm when executed across multiple com-
pute nodes (Carothers, Bauer, and Pearce 2002, Fujimoto
and Hybinette 1997, Bauer et al. 2005). The ROSS simu-
lator is a general-purpose simulator exposing a simple API
for the creation of PDES models.

Kernel Processes were introduced in Carothers, Bauer,
and Pearce (2002) and aggregate the LP processed event
lists. The intent of the aggregation is to reduce the cost
of traversing all LPs processed event lists during fossil
collection. However, aggregated processed event lists have
the side-effect of potentially longer rollbacks. Because
we are allocating a small amount of optimistic memory,
processing elements, or PEs, are unable to run too far into
the future, and so a small number of KPs does not negatively
impact simulator efficiency (i.e., ratio of rolled back events
to total events processed during sequential simulation). It
does give the benefit of extremely high performance fossil
collection.
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TLM: 754 Simultaneous Wave Transmissions
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Figure 1: Scenario includes 754 radios simultaneous trans-
mitting over complex 3D terrain. The XY labels indicate
DTEDI coordinates.

4.3 Experiment Setup

Our experimentation focused on a hypothetical radio com-
munication network scenario based in Southwest Asia. The
terrain modeled was a 100km” area and to a height of
100m, uniformly sampled at a 100m resolution in the XY
plane, and 10m in the Z plane. Level 1 digital terrain el-
evation (DTED1) data was obtained from GeoCommunity
(www.geocomm.com). The model scenario consisted of
754 radio LPs simultaneously transmitting a 10MHz signal
with a threshold wave amplitude of 1KHz (Figure 1). At
this resolution, the battlefield model consumed 7.7 GB of
memory representing 10 million grid LPs.

Interestingly, the worst case for this method turns out
to be a sparsely populated environment. The reason for this
behavior is that there is comparatively little wave attenu-
ation through the atmosphere. Because of the degree of
effort required to describe buildings and foliage on the grid,
we were satisfied with a 3D complex ground terrain envi-
ronment only, understanding that additional environmental
elements would likely only improve the performance via
rapid attenuation and localized propagation.

Other parameter settings are given in Table 2 for prop-
agating isotropic waves. The spatial coefficient defines how
energy is propagated in 3 dimensions outward from a cell.
The spatial ground coefficient determines how waves re-
flecting from the ground plane are attenuated. The wave
loss coefficient determines wave amplitude attenuation be-
tween cells for the atmosphere. The wave velocity is used
to determine the time advance steps during propagation. Fi-
nally, the amplitude threshold determines a cutoff threshold
for the signal, where the signal is indistinguishable from
background noise. An example isotropic wave propagation
over a flat ground plane is shown in Figure 2.
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Figure 2: An example wave propagation over time. The
wave amplitude is shown for a 1KHz signal over a flat
ground plane.

Table 2: Experiment input parameters.

Parameter Value
Spatial Coefficient 0.33
Spatial Ground Coefficient 0.9
Wave Loss Coefficient 0.9
Wave Velocity 1.0
Amplitude Threshold 100

4.4 Parallel Performance
4.4.1 Priority Queues

Because this is only the second model of a physical system
for PDES, we investigate the impact on performance using
a variety of priority queues for event scheduling. Under-
standing how to tune the simulator requires understanding
the behavior of the model. In a vacuum with no obstacles,
an isotropic wave will propagate as a sphere. This indicates
that an increasing number of events are consumed over time
at a factor related to the surface area of a sphere, 472,
Also, each event on the wavefront surface has the same
timestamp, therefore the choice of priority queue used in
the simulator has a major impact on performance, as shown
in Figure 3.

Calendar queue (Brown 1988) performance is known
to have a complexity of O(n) when the frequency of ties
among events is high, accounting for it’s poor performance
in all cases. The performance of the Heap (Deo and Prasad
1992) is a large improvement, but the Splay Tree (Ronngren
and Ayani 1997) implementation clearly attained the best
performance at almost 1.3 million events per second on a
single processor core. The main reason for comparing the
model performance using different priority queues is that the
Calendar queue reports greater than 40-fold speedup over
sequential using 4 CPUs. This is misleading when placed in
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Figure 3: Simulator performance implementing a variety of
priority queues. Results collected on a single cluster node.

the context of other queue algorithms. Conversely, speedup
based on the Splay Tree results reports only 53% improve-
ment across 4 CPUs. We hypothesize that the constrained
amount of optimistic memory (20% over sequential) throt-
tles how far into the future Time Warp can execute events.
In all following experiments, the Splay Tree is used.

4.4.2 LP Mappings

Thus far in our experimentation, LPs have been allocated
to PEs on a round-robin basis through the grid. Starting
at the origin of the cubic grid (i.e., a corner), we begin
round-robin allocation in the X-axis, then the Y-axis, and
finally the Z-axis. Therefore, each YZ plane in the X-axis
is mapped to a processor in turn, as shown in Figure 4.

The LP-PE mapping dictates performance in terms of
the number of events that must be passed between processors.
Crucial to using multiple compute nodes, the LP-PE mapping
must minimize the number of events passed between nodes.
An iterative improvement on the round-robin mapping would
be to combine the YZ-planes allocated to a processor so
that they are concurrent. Doing so reduces the percent of
remote events from 23% to 0.17%, and allows us to utilize
multiple compute nodes.

Figure 5 illustrates the performance of the model on
multiple compute nodes. Using multiple nodes, less mem-
ory is consumed by the model and performance improves
dramatically. Therefore, we increase the model event pop-
ulation by reducing the amplitude threshold to 10, and
increase the amount of optimistic memory (C = 2.0).

In the 20 and 25 CPU cases, the work was relatively
even across all CPUs. However, in the 50 CPU case, 25
of the processors never execute an event, because no wave

682

PEO|| PET|| PEO[| PE1 LR

» X
Z
Figure 4: Round-robin mapping of LPs to PEs.
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Figure 5: Hive Cluster performance. In the 50 CPU case
the model no longer maps work to all processors, and
performance drops. Performance is directly impacted by
the LP-PE mapping.

propagation occurs in those areas of the grid (namely, the
edges).

Our conclusion can only be that a static mapping can
only achieve limited success when using a large number of
processors, and the scenario is not static (i.e., the radios
are mobile). A dynamic LP-PE mapping could focus all
available processors into the areas of the grid active in wave
propagation. Also, it should be noted that for this model
scenario, with this mapping, we had 25 idle CPUs available
that could have focused effort on dynamic load-balancing.
We leave an investigation of dynamic load-balancing to
future work.
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5 CONCLUSIONS

We have investigated the Event-Based Transmission Line
Matrix modeling method within the context of optimistic
parallel discrete event simulation with reverse computa-
tion. We have illustrated the performance of a complex
terrain, encompassing 100km? with realistic signal param-
eters. Our model captured the physical effects of reflection,
diffraction with respect to electromagnetic wave propaga-
tion. Model performance in an optimistically synchronized,
parallel discrete event simulation employing reverse compu-
tation proved to be an efficient mechanism for parallelization.
However, simulations must have dynamic load balancing
of LP to PE allocations in order for all CPUs to become
utilized in dynamic scenarios.

6 FUTURE WORK

In the future we would like to study additional features
of electromagnetic wave propagation, such as scattering
and transmission through inhomogeneous materials (i.e.,
adaptive mesh refinement, buildings and foliage). From a
communications perspective, we would also like to study the
effects of multipath, MIMO channel modeling, background
interference effects, modulation as well as a variety of other
waveforms.

Other concerns raised in Tang et al. (2006) related to a
static mapping of grid elements to processors. Further inves-
tigation is required to understand the performance impact of
the LP-PE mappings, and to determine if improvements can
be achieved over the runtime of a scenario with dynamic
load balancing.

Finally, we would like to study representing this model
in the context of general purpose processors, such as graphics
processors and the Cell Broadband Engine. We believe this
modeling method will fit these paradigms well, and that
additional improvements in performance can be gained.
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