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Abstract

We evaluate UNITY – a computational model, specification language and proof system defined by Chandy
and Misra [5] for the development of parallel and distributed programs – as a platform for simulation
model specification and analysis. We describe a UNITY-based methodology for the construction, analysis
and execution of simulation models. The methodology starts with a simulation model specification in
the form of a set of coupled state transition systems. Mechanical methods for mapping the transition
systems first into a set of formal assertions, permitting formal verification of the transition systems, and
second into an executable program are described. The methodology provides a means to independently
verify the correctness of the transition systems: one can specify properties formally that the model
should obey and prove them as theorems using the formal specification. The methodology is illustrated
through generation of a simulation program solving the machine interference problem using the Time
Warp protocol on a distributed memory parallel architecture.

Categories and Subject Descriptors: I.6.5 [Simulation and Modeling]: Model Development –
modeling methodologies;; I.6.8 [Simulation and Modeling]: Types of Simulation – parallel, distributed

General Terms: simulation specification, simulation verification, parallel simulation protocols, UNITY

Additional Key Words and Phrases:

1 Introduction

Model specification is often viewed as a critical process within the simulation model life cycle [2]. The
specification process is typically realized using a specification language. Dozens of specification languages
have been proposed for general software system development, and numerous simulation-specific specification
languages have also appeared, e.g. [19]. Many of these software and simulation specification languages are
formal in nature. Precision in language syntax and semantics facilitates diagnostic analysis that can assist
in the determination of model correctness [17, 19].

Although methods for formally reasoning about sequential, general purpose computer programs were first
proposed twenty-five years ago [10], few methods permit formal reasoning about simulation model specifica-
tions. Reasoning about simulations requires methods that accommodate: (1) simulation time, (2) prioriti-
zation of events or actions scheduled for the same simulation time, and (3) output measures. While problem
(2) and problems similar to (1) are addressed in the areas of real-time systems [1, 23] and communication
protocols [25, Section 6.1], no existing methods address problem (3). Zeigler’s DEVS formalism [29, 30, 31]
provides some mechanisms for specifying and analyzing properties of simulation output measures, but not
in the form of a general-purpose formal reasoning system and automated theorem proving mechanism.

This paper suggests an approach for simulation model development that admits the application (and
extension) of a general-purpose formal reasoning system. The suggested methodology pursues automated
construction and verification of sequential and parallel simulation programs from a communicative model
using the UNITY computation model and proof system [5] which is reviewed in Section 2. The methodol-
ogy supports multiple time flow mechanisms, execution protocols, and target computer architectures. The
approach is described in six steps. The first step generates a communicative model in the form of a coupled
state transition system (CSTS), which is formally defined in Section 3. The CSTS is an algebraic speci-
fication, defining all possible transitions among simulation model state variable values, and all constraints
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that dictate when each transition may occur. The second step is the automated generation of a UNITY
program from the CSTS. The third step provides automated generation of UNITY assertions from the CSTS
(Section 6). In the fourth step, a time flow mechanism is superposed on the UNITY program (Section 7).
A novel aspect of the methodology is that a simulation modeler can state (some) properties that a correct
communicative model must possess, and then use the UNITY proof system to formally verify the correctness
of the CSTS. Use of the rules guarantees that the program meets the specification embodied by the CSTS.
The fifth step maps the program resulting from step four to a target computer architecture. One heuristic
for this step is given in Section 8. The final step in the methodology maps the program resulting from step
five to a simulation protocol for sequential or parallel execution. A mapping to the Time Warp protocol
is outlined in Section 9. The methodology is summarized in Section 10, and illustrated with the machine
interference problem.

As a work in formal methods, the paper necessarily contains a significant degree of notation. We have
made every effort to give a “plain English” description of the key notation and formulas in the paper and we
have included a reference for the notation in Appendix 11. However, some level of comfort with formalism
on the part of the reader is probably required. We also concede that, as is often the case in developing formal
methods, the initial scaleability of the methods suggested here is somewhat limited, and certainly this factor
hampers the immediate practicality of the approach. Our objective in this work is to pursue and foster the
development of highly automated systems that enable users to be insulated from many of the underlying
complexities of reasoning about simulation models. We consider the methods proposed here an early step
toward that goal.

2 Introduction to UNITY

Several factors mitigate in favor of Chandy and Misra’s UNITY as a platform for formal simulation model
development and analysis:

• UNITY permits program development through stepwise refinement, desirable for simulation program
development.

• The UNITY computation model is based on a state transition system, which underlies other proof
systems (e.g., [22, 25]). Transition systems do not explicitly specify control flow (e.g., while and if
statements in imperative programming languages), which is desirable for two reasons. First, different
parallel computers use different forms of control flow. Second, sequential programmers are accustomed
to over-specifying control flow. Efforts to automatically transform sequential FORTRAN programs to
parallel programs, for example, typically require code analysis to identify the control flow constraints
that can be relaxed.

• UNITY proof rules are based on temporal logic, and real time extensions to temporal logic have been
proposed (e.g., [13]) that could be used to reason about simulation time and ordering of events and
actions scheduled for the same simulation time.

• UNITY assertions permit algebraic, rather than operational, specification. Algebraic specification
naturally captures what a model is to do without specifying how it is to be done, and hence is well
suited to model representation.

• A proof system suitable for mechanical verification of UNITY proofs exists [12].

UNITY provides a means to systematically develop and prove properties about programs for a wide
variety of applications and computer architectures. Architectures considered include sequential processors,
synchronous and asynchronous shared-memory multiprocessors, and message-based distributed processors.

UNITY supports program development by stepwise refinement of specifications. The final specification
is implemented as a program, and the program may be refined further if necessary. During early stages of
refinement, correctness is a primary concern. Considerations for efficient implementation on a particular
architecture are postponed until later stages of refinement. Thus, one may specify a program that may
ultimately be implemented on many different architectures. This process can be envisioned as generating
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a tree of specifications, in which the root is a correct and, ideally, entirely architecture-independent spec-
ification, and each leaf corresponds to a correct specification of an efficient solution for a particular target
architecture. Development of a correct UNITY program requires, at each stage of refinement, proof that
the refined specification implies the previous specification. In addition, one must prove that the program
derived from the most refined specification meets that specification.

2.1 Computational Model

“A UNITY program consists of a declaration of variables, a specification of their initial values, and a set of
multiple assignment statements”[5, p. 9]. The UNITY computational model at first appears to be somewhat
unconventional. (The state of a program after some step of the computation is the value of all program
variables):

A program execution starts from any state satisfying the initial condition and goes on forever;
in each step of execution some assignment statement is selected nondeterministically and exe-
cuted. Nondeterministic selection is constrained by the following fairness rule: Every statement
is selected infinitely often [5, p. 9].

“Infinitely often” means that at any point during program execution, every statement in the program
must be executed at some point in the future. (Note that the computational model represents asynchronous
execution of assignments in a parallel computer by interleaved execution.)

A UNITY program never terminates. However, a program may reach fixed point (FP), which is a
computation state in which execution of any assignment statement does not change the state. At FP, the
left and right hand side of each assignment statement are equal, and an implementation can thereafter
terminate the program.

The UNITY computational model appears conventional if viewed as a set of state transition machines,
where execution of an assignment statement corresponds to a transition.

The UNITY goal of postponing questions of efficiency and architecture to late in the refinement process
is achieved by saying very little about the order in which assignments are executed during early specification
stages, and by including control flow in the form of a detailed execution schedule of assignment statements
efficient for a particular target architecture as a last step in program development.

2.2 Programming Logic

UNITY contains a formal specification technique that uses certain notation and logical relations. Let p and
q denote arbitrary predicates, or Boolean valued functions of the values of program variables. Let s denote
an assignment statement in a program. The assertion p⇒ q is read “if p holds then q holds.” The assertion
{p}s{q} denotes that execution of statement s in any state that satisfies predicate p results in a state that
satisfies predicate q, if execution of s terminates.

The notation 〈op var–list : boolean–expr :: assertion 〉 denotes an expression whose value is the result
of applying operator op (e.g., quantifiers ∀ (for all) and ∃ (there exists), + (sum), max, logical operators ∧
(and) and ∨ (or)) to the set of expressions obtained by substituting all instances of variables in the var–list
that satisfy the boolean–expr in the assertion. For example, if i denotes an integer, 〈+i : 1 ≤ i ≤ N :: i〉 is
an expression whose value is

∑N
i=1 i.

UNITY defines three fundamental logical relations: unless, ensures, and leads-to. The definitions below
are those of Chandy and Misra.[5, Ch. 3]

Unless: The assertion “punlessq” means that if p is true at some point in the computation and q is not, in
the next step (i.e., after execution of a statement) either p remains true or q becomes true. Therefore either
q never holds and p continues to hold forever, or q holds eventually (it may hold initially when p holds) and
p continues to hold at least until q holds. Formally, p unless q ≡ 〈∀s : s in F :: {p∧ ¬q} s {p ∨ q}〉, where s
is quantified over all statements in a given program.
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program sort
assign

〈2 i : 0 ≤ i < N :: A[i], A[i+ 1] := A[i+ 1], A[i] if A[i]>A[i+1]〉
end {sort}

Figure 1: Sort Array A into Ascending Order.

program <name>
declare <var–decl–list>
initially <initial–list>
always <initial–list>
assign <stmt–list>

end { <name> }

Figure 2: UNITY Program

Ensures: The assertion “p ensures q” means that if p is true at some point in the computation, p remains
true as long as q is false, and eventually q becomes true. This implies that the program contains a single
statement whose execution in a state satisfying p∧¬q establishes q. Formally, pensuresq ≡ punlessq ∧ 〈∃s :
s in F :: {p ∧ ¬q} s {q}〉where s is quantified over all statements in a given program.

Leads-to: Leads-to is denoted by the symbol �→. The assertion “p �→ q” means that if p becomes true at
some point in the computation, q is or will be true. The formal definition of leads-to is somewhat lengthy,
and is not given here.

Based on the three fundamental logical relations unless, ensures, and leads-to, additional relations may
be defined. We discuss two additional relations: until and invariant.

Until: The assertion “p until q” means that p holds at least as long as q does not and that eventually q
holds. The assertion p until q relaxes the requirement that execution of exactly one statement in a state
satisfying p ∧ ¬q establishes q. Formally, p until q ≡ (p unless q) ∧ (p �→ q).

Invariant: An invariant property is always true: All states of the program that arise during any ex-
ecution sequence of the program satisfy all invariants. Formally, q is invariant ≡ (initial condition ⇒
q) ∧ q unless false.

2.3 Program Notation

UNITY generates two artifacts during the specification process: a list of assertions using the logical
relations introduced in Section 2.2 and an implementation of the assertions in a UNITY program. The
program syntax is shown in Figure 2.

The declare section specifies the variables used in the program and their types. The initially section
specifies the initial value of program variables. The always section can be thought of as defining functions;
function names appear on the left hand side of the symbol “=”. The assign section contains assignment
statements performed during program execution.

A <var–decl–list> is a list of variable declarations expressed using the syntax of the programming lan-
guage Pascal. The <initial–list> and <stmt–list> are identical in syntax, except that “=” and “:=” are used,
respectively. A <stmt–list> has the form <stmt> 2 <stmt> 2 · · ·2<stmt>. The symbol “2” separates
statements. A <stmt> is either a quantified statement list or a single statement. A quantified statement
list, 〈2var–list : boolean–expr :: <stmt–list> 〉, denotes the set of statements obtained by instantiating the
<stmt–list> with the appropriate instances of variables in the var–list. For example, the assign section of
Figure 1 contains one quantified statement list, which consists of N single statements.

4



A single statement has two forms: simple and quantified. Examples of simple single statements are:

x, y := y, x Multiple assignment: swap y
and x.

x := y ‖ y := x Same as x, y := y, x.

x := y if y ≥ 0 ∼
−y if y ≤ 0

Set x to absolute value of y.

y := −y if y ≤ 0 Set y to absolute value of y
(identity assignment if y > 0).

A quantified single statement has the form 〈‖ var–list : boolean–expr :: <stmt> 〉, where <stmt> is a
single statement. For example, the statement 〈‖ i : 0 ≤ i < N :: A[i] := A[i+ 1]〉 shifts A[1] to A[0], A[2] to
A[1], . . . , A[N ] to A[N − 1].

UNITY is illustrated using the following problem: Sort integer array A[0..N ], N ≥ 0, in ascending
order.[5, p. 32] The sort program specification states that any execution of the program eventually reaches
a computation state in which array element A[i] does not exceed the value of element A[i + 1], for i =
0, 1, . . . , N − 1. This progress property is formalized in UNITY in the following assertion: true �→ 〈∧i : 0 ≤
i < N :: A[i] ≤ A[i+ 1]〉. Figure 1 contains a UNITY program meeting this specification.

2.4 Program Development by Composition

UNITY facilitates program development by composing a large program from many smaller programs. A
large program may be composed using one of two rules, union and superposition. Software engineers have
used some form of union and superposition rules for years; UNITY’s contribution is a proof system by which
one can deduce the properties of a composite program from its component modules.

In this paper we illustrate the use of superposition. Under superposition,

The program is modified by adding new variables and assignments, but not altering the as-
signments to the original variables. Thus superposition preserves all properties of the original
program. Superposition is useful in building programs in layers; variables of new layer are defined
only in terms of the variables of that layer and lower ones. [5, p. 154]

A superposition is described by giving the initial values of superposed variables and transformations on
the underlying program, by applying the following two rules:

Augmentation rule: A statement s in the underlying program may be transformed into a statement s ‖ r,
where r does not assign to the underlying variables.

Restricted union rule: A statement r may be added to the underlying program provided that r does not
assign values to the underlying variables.

Superposition is used in Section 7 to allow a simulation model to be specified without regard for the time
flow mechanism that will be used. A particular time flow mechanism may be superposed onto an underlying
simulation program.

2.5 Architecture Mappings

A mapping of a UNITY program to an architecture specifies (1) a mapping of each assignment statement to
one or more processors, (2) a schedule for executing assignments (e.g., control flow), and (3) a mapping of
program variables to processors.
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For example, to map a UNITY program to an asynchronous shared-memory architecture, (1) above
consists of partitioning the assignment statements, with each processor executing one partition. Item (2)
specifies the sequence in which each processor executes the statements assigned to it. Item (3) allocates
each variable to a memory module such that “all variables on the left side of each statement allocated to a
processor (except subscripts of arrays) are in memories that can be written by the processor, and all variables
on the right side (and all array subscripts) are in memories that can be read by the processor.”[5, p. 83]

Although this mapping appears to be simple, it has a rather complex implication. A given architecture
guarantees certain hardware operations to be atomic, and the programmer can only use these to build
the synchronization mechanisms (e.g., locks and barriers). Meanwhile, UNITY’s computational model is
based on fair interleaving of atomically executed assignment statements. Therefore to obtain an efficient
implementation one may need to refine the program to a more detailed level that takes into account the
atomic hardware operations available on a target architecture. For example, a shared variable can be refined
to be implemented by a set of variables such that the hardware atomicity corresponds to the atomicity of
UNITY assignment statement execution.

3 Coupled State Transition Systems

A simulationmodel is represented as a coupled state transition system, which is a five-tupleG = (S,Θ, V, E, C)
in which:

• S is a set of variables. The set of values assumed by each variable S ∈ S is denoted by the set Ŝ.
Variables that assume values of simulation time are time variables and comprise the set Ω, all other
variables are state variables and make up the set Σ. Note that S ≡ Ω

⋃
Σ.

• Θ is a formula specifying the initial value of one or more variables in S.

• V is a set of graph vertices. Each vertex v ∈ V is labeled by a variable S ∈ S and a variable value
u ∈ Ŝ. All vertices in V are uniquely labeled.

• E is a set of directed edges. The vertices joined by each edge must have identical variable labels. An
edge defines a transition (value change) for the variable labeling the joined vertices.

• C is a set of couplings. Each coupling c ∈ C is a triple (E′, T, C), where:

– E′ is a set of edges, such that E′ ⊆ E and the set of initial vertices for edges in E′ have unique
variable labels. Each edge in E belongs to exactly one coupling in C. (A vertex may belong to
more than one coupling.)

– T is a boolean-valued function of time variables in S.

– C is a boolean-valued function of state variables in S.

The functions in T take the form: t ≥ < time var exp > where t is simulation time and < time var exp
> is an expression involving the variables in Ω. Time variables may be assigned value through the use of
random variates, written as a sequence. In random variate sequence s, the first random variate is denoted
“Head(s)” and is removed by the statement, “s := Tail(s).”

The variables in S assume typing similar to that of traditional high level programming languages. Con-
stants and variables that are known to be assigned a value only once are regarded as write-once variables and
must be treated specially in the transition system (i.e. no “transition” may exist for write-once variables,
only an initializing assignment may be defined.)

Some elaboration on the nature of vertex labelings is warranted. In a discrete event simulation all
variables change values a finite number of times and therefore each value change could be represented by
its own transition in the CSTS. However, this method is not always the most effective way to describe a
system. For example, in a classical queueing model the status of the server may be enumerated as busy and
idle and transitions explicitly constructed to illustrate the conditions under which ther server changes its
status from one value to the other. But value changes in other model variables, for example the number
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S,x - S,y
t ≥ T

C?

Figure 3: Portion of CSTS Illustrating One Edge, a Time Formula, and a Condition.

S′′,x′′ - S′′,y′′

S′,x′ - S′,y′

S,x - S,y
t ≥ T

C?

Figure 4: Portion of CSTS Illustrating Three Coupled Edges.

served by the server, might best be described as a function – i.e. under a given model condition the variable
number served goes from some value N to the value N + 1. We can represent this transition in a CSTS
simply by labeling the tail of the transition by the variable number served and the value N and the head by
number served and N + 1 (or alternately number served + 1. We discuss the implications of this later.)
We assume that N will be instantiated as a value in the range of valid values for number served. Note
that if the value of number served is initially set anywhere in the specification, and changes only by the
increment described above, we may be able to prove whether or not it will assume values within a specified
range (we may not be able to show that it doesn’t grow too large in some circumstances). Obviously, if the
value number served is input to the model we can provide no such proof.

The CSTS may be used to model systems with both integer and real-valued variables that assume values
from either finite or infinite ranges. The only requirement is that transitions between variable values be
well-defined. (Note that this requirement seems necessary for any specification of a discrete event simulation
model.) Transitions which are labeled with specific values are called enumerated transitions. Transitions
labeled with placeholders are generic transitions. Each transition type requires different treatment within
the methodology.

When multiple generic transitions compose a single coupling, use of the same placeholder indicates
equivalent values of the variables labeling the generic transitions. This connotation impacts the proofs for
the specification. See Section 4 on generating couplings and Section 6 on generating assertions for further
details on transition labeling and typing.

Figures 3 and 4 illustrate portions of CSTS’s. Each figure illustrates a coupling (E′, T, C) where E′

contains, respectively, one and three edges. The meaning of Figure 3 is that if the value of variable S is x
and and the simulation time is equal or greater than the time value contained in T , and if formula C is true,
then S is assigned the value y. The meaning of Figure 4 is that if the value of variables S,S′ and S′′ are
x, x′, and x′′, respectively, and if simulation time is equal or greater than the time value contained in T, and
if formula C is true, then S,S′, and S′′ simultaneously assume the respective values y, y′, and y′′. Note our
convention is for variables to appear in typewriter font. Variable values appear in either regular or italic
fonts where needed for clarity of presentation.

Two graph edges are coupled if they belong to the same coupling. Coupled edges are denoted graphically
by drawing a path consisting of undirected edges whose endpoints lie on the edges that are coupled; this is
illustrated by the vertical line in Figure 4.
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A simple example. We use the classical machine interference problem to illustrate CSTS concepts [7].
In the problem, a set of N semi-automatic machines fail intermittently and are repaired by one technician.
Machine failure rates are assumed to follow a Poisson distribution with parameter λ. Upon arriving at a
failed machine, a technician can repair the machine in a time period that is exponentially distributed with
parameter µ. A variety of service disciplines are possible that specify how the technician selects a machine
to repair.

For this example we consider the patrolling repairman service discipline, in which a single technician
services all machines [15, p. 60]. In this problem, hereafter referred to as the machine repairman problem,
(MRP) the technician traverses a path amongst the machines in a cyclic fashion (0, 1, . . . , N − 1, 0, 1, . . .).
The technician walks at a constant rate and only stops walking upon encountering a down machine. The
technician takes constant time T to walk from one machine to the next.

The variables required to model the MRP are described below. Let m denote an integer in the interval
[0, N) and represent machine numbers. We describe the variables that relate to the machines and the
technician. We assume N, T and max repairs are “global” simulation variables.

Machines: Each machine m is in one of three states: up, inrepair, or down. Associated with m is a
variable m.state that takes on values up, inrepair or down. For convenience we employ variables m.u, m.i,
and m.d, defined as:

m.u ≡ (m.state = up)
m.i ≡ (m.state = inrepair)
m.d ≡ (m.state = down)

Therefore the value of m.state is up, inrepair, or down if m is up, in-repair, or down, respectively. Each
machine also has the state variables m.λ, the machine failure rate, and m.µ, the repair rate for the machine.
The failure time for a machine is denoted by the time variable, m.fail time. The simulation time that the
repairman arrives at a machine is represented by m.arrive time and the time that a repair ends is given in
m.endrepair time.

Technician: The location of the technician assumes one of 2N values: at machine 0, leaving machine 0,
at machine 1, leaving machine 1, . . . , at machine N − 1, and leaving machine N − 1.

To represent these 2N states, we associate with the technician a state variable loc, that takes on the 2N
values 0, 0.5, 1, 1.5, 2, 2.5, . . . , N − 1, N − 0.5, respectively. For convenience we employ boolean variables
m.a and m.l, defined as:

m.a ≡ (loc = m)
m.l ≡ (loc = m⊕ 0.5)

Therefore the value of loc is 0 if the technician is at machine 0, the value is 0.5 if the technician is traveling
from machine 0 to 1, the value is 1 if the technician is at machine 1, and so on. The symbols ⊕ and � are
occasionally used in reference to loc; they denote addition and subtraction modulo N .

The state variable num repairs counts the number of repairs completed by the technician.

CSTS: A simulation model of the MRP is represented by the CSTS GMRP = (S,Θ, V, E, C) in which:

• S = { t, N, T, max repairs } ∪ { ∀ m : 0 ≤ m< N :: m.state, m.λ, m.µ, m.fail time, m.arrive time,
m.endrepair time } ∪ { loc, num repairs },

• Θ = 〈∀ m : 0 ≤ m < N :: m.u, m.end repair = ∞, m.fail time = t + Head(m.λ), m.arrive time
= ∞ 〉 ∧ t = 0 ∧ num repairs = 0 ∧ 0.l ∧ 1.arrive time = t + T (Initially, all machines are up
with first failures scheduled. The technician is leaving machine zero and an arrival time is scheduled
for machine 1. All other machines have no pending arrival (arrival times set to ∞). The simulation
clock is set to zero. The number of repairs is also set to zero.)
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-

1.arrive time,
t + T

true?
Initialization

-

n.arrive time,
∞

true?
Initialization

-

m.endrepair time,
∞

true?
Initialization

-

m.fail time,
t + Head(m.λ)

true?
Initialization

-

loc,
0.5

true?
Initialization

-

num repairs,
0

true?
Initialization

-

m.state,
up

true?
Initialization

Figure 5: CSTS for MRP Initializing Transitions.

• V consists of 24N + 6 vertices, representing all labelings of variable and variable value pairs.

• E consists of 12N + 3 arcs, which are specified in Figures 5 through 7. Figure 5 represents 4N + 2
arcs in the CSTS. Note that in these figures m is on the range 0 ≤ m < N and n is quantified over the
same range but excludes the value 1. (The initial arrive times for all machines are set to ∞ except for
machine 1.) Figure 6 represents 5N + 1 arcs and Figure 7 conveys 3N of the arcs in E.

• C consists of the 5N + 1 couplings {ci|0 ≤ i ≤ 5N}.

– The 4N + 2 arcs in Figure 5 represent a single coupling based on the condition Initialization.

– The transitions from m.a to m.l are coupled with the m ⊕ 1.arrive time transitions. (N cou-
plings.)

– The transitions form m.d to m.i are coupled with the m.endrepair time transitions. (N cou-
plings.)

– The transitions from m.i to m.u are coupled with both the m.fail time and num repairs tran-
sitions. (N couplings.)

– N couplings for the transitions from m.l to m ⊕ 1.a.

– N couplings for the transitions from m.u to m.d.

Figure 5 illustrates the initializing transitions for the model. Initializing transitions occur for all variables
assigned at model initialization and for all model write-once variables. An initializing transition has no value
prescribed on the tail of the arc. For this example all conditions on initializing transitions are the same,
i.e. the special condition Initialization which is assumed to be true only at model start-up. Figure 6
illustrates the model transitions for state variables and Figure 7 shows the model’s time variable transitions.
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m.state,
inrepair -

m.state,
up

t ≥ m.endrepair time?
true?

m.state,
down -

m.state,
inrepair

true?
m.a?

m.state,
up -

m.state,
down

t ≥ m.fail time?
¬m.a?

loc,
m�0.5 -

loc,
m

t ≥ m.arrive time?
true?

loc,
m -

loc,
m⊕0.5

true?
m.u?

num repairs,
k -

num repairs,
k + 1

t ≥ m.endrepair time?
true?

Figure 6: CSTS for MRP State Variable Transitions.

m.endrepair time,
ϕ

-

m.endrepair time,
t + Head(m.µ)

true?
m.a ∧ m.d?

m.fail time,
ϕ

-

m.fail time,
t + Head(m.λ)

t ≥ m.endrepair time?
true?

m⊕1.arrive time,
ϕ

-

m.⊕1.arrive time,
t + T

true?
m.a ∧ m.u?

Figure 7: CSTS for MRP Time Variable Transitions.
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3.endrepair time,
ϕ′ -

3.endrepair time,
∞true?

num repairs,
k -

num repairs,
k + 1

3.fail time,
ϕ

-

3.fail time,
t + Head(3.λ)

3.state,
inrepair -

3.state,
up

t ≥ 3.endrepair time?

Figure 8: The Coupling Involving the Transition from inrepair to up for Machine 3.

4 Generating Couplings in a CSTS

Couplings are generated from transitions by combining all transitions with equivalent time and state con-
ditions. Note that if a state condition for transition i requires the value specified on the tail of transition
j, the two transitions can be coupled. The transitions for m.a to m.l (the second rule in Figure 6) and
m⊕1.arrive time (the first rule in Figure 7) are an example of this.

Figure 8 presents the coupling involving the transition of the state variable state from the value inrepair
to up for machine 3. We observe that this transition occurs when simulation time is greater than or equal
to the value stored in 3.endrepair time. Three other transitions occur simultaneously with the change in
value of 3.state: the subsequent fail time for machine 3 is scheduled, the number of repairs completed is
incremented by one and the value of 3.endrepair time is set to undefined (or ∞).

Note that we (automatically) introduce a transition to ∞ on every coupling in which a time variable is
part of the condition on transitions. Setting a time value of a variable is natural when the time is that of
a state change of interest to the modeler. This resetting to ∞ of a time-valued variable is needed only to
facilitate correctness in the reasoning system (and potentially an eventual implementation of the model).
The modeler may assume this takes place and that the placeholder generated will be unique within the
coupling.

The five non-initializing couplings generated for the MRP are illustrated in Figure 9.

5 Equivalence Between CSTS and UNITY Program

Defined below is an equivalence between CSTS’s and UNITY programs. CSTS G = (S, Θ, V, E, C) is
equivalent to UNITY program P . Let L =‖ C ‖, and let C = {c1, c2, . . . , cL}. By convention we regard c1 as
the coupling representing initialization. The program equivalent to G is defined below.

• The constant section: defines model constants.

• The declare section: declares, for each S ∈ S, variable S with type appropriate for values in Ŝ

• The initially section satisfies Θ and is comprised of UNITY initially statements (same as assignment
except = replaces :=) for each arc in the Initialization coupling, c1.

• The assign section contains, for each transition coupling cj = ({e1, e2, . . . er}, T, C), for 2 ≤ j ≤ L, a
UNITY assignment statement. Let the initial vertex of ei, for 1 ≤ i ≤ r, be labeled by Si, xi and the
final vertex labeled by Si, yi. Generate an assignment statement of the form:

2 〈‖ i : 1 ≤ i ≤ r :: Si := yi if 〈Si = xi ∧ T ∧ C〉〉

11



Π1:
t ≥ m.endrepair time?m.state,

inrepair -

m.state,
up

m.fail time,
ϕ -

m.fail time,
t + Head(m.λ)

num repairs,
k -

num repairs,
k + 1

m.endrepair time,
ϕ′ -

m.endrepair time,
∞true?

Π2 : loc,
m -

loc,
m⊕0.5

true?

m⊕1.arrive time,
ϕ

-

m.⊕1.arrive time,
t + Tm.u?

Π3 : m.state,
down -

m.state,
inrepair

true?

m.endrepair time,
ϕ

-

m.endrepair time,
t + Head(m.µ)m.a?

Π4 : loc,
m�0.5 -

loc,
m

t ≥ m.arrive time?

m.arrive time,
ϕ

-

m.arrive time,
∞true?

Π5 : m.state,
up -

m.state,
down

t ≥ m.fail time?

m.fail time,
ϕ

-

m.fail time,
∞¬m.a?

Figure 9: Non-Initializing Couplings for the MRP. Π1 = end of repair; Π2 = technician at an up machine;
Π3 = technician at a down machine; Π4 = arrival; Π5 = failure.
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The UNITY program in Figure 10 is equivalent to the CSTS of Figures 5 through 7. Sequence m.λ
(respectively, m.µ) is implemented by array element λ[m] (µ[m]).

Note that when generating assignments from generic transitions, if a placeholder appears in the expression
on the head of the arc, and it is the same placeholder that appears on the tail of the arc then replace the
placeholder by the variable name in the assignment expression. For example, if the number served in the
queueing model is defined by a transition going from N to N + 1, replace the N in the expression N + 1
by number served to generate correct UNITY code. If a placeholder appears on the head of a transition
arc that is not the placeholder designated at the tail, then the specification of the transition is considered
ambiguous and in error.

6 Mapping CSTS to UNITY Assertions

This section describes formalization of a CSTS G = (S,Θ, V, E, C) as a set of UNITY assertions. Generation
of assertions permits the UNITY proof system to be used to establish the correctness of the assertions, and
by extension, G. The specification is constructed in a two step process:

1. Formulate unless and leads-to conjectures according to the rules given below.

2. Prove the conjectures using the UNITY program generated from G as described in Section 5.

The final specification consists of those unless and leads-to conjectures whose proof succeeds and an assertion

of the form, “Initial condition ⇒ Θ.” We use the notation
?

unless and ?�→ to denote conjectures, while unless
and �→ denote proven assertions.

Two sets of rules generate UNITY assertions; each generates assertions based on couplings in the CSTS
G. The first set of rules generates assertions for couplings in which every vertex is a member of only one
coupling (we refer to these as independent couplings). When a vertex participates in multiple couplings, a
second rule provides the assertions for those bound couplings.

6.1 Mapping rules for independent couplings

For each independent coupling Ci = (E′
i, Ti, Ci) in G, generate two unless conjectures and one leads-to

conjecture as follows. Let the initial vertices of Ci be labeled by (Sj , xj) and the corresponding final vertices
by (Sj , yj).

Ci ∧ Ti ∧


 ∧

j:1≤j≤‖E′
i
‖
Sj = xj


 ?

unless


 ∧

j:1≤j≤‖E′
i
‖
Sj = yj


 (1)

Ci ∧ Ti ∧


 ∧

j:1≤j≤‖E′
i‖
Sj = xj


 ?�→


 ∧

j:1≤j≤‖E′
i‖
Sj = yj


 (2)

¬(Ci ∧ Ti) ∧


 ∧

j:1≤j≤‖E′
i‖
Sj = xj


 ?

unless Ci ∧ Ti ∧


 ∧

j:1≤j≤‖E′
i‖
Sj = xj


 (3)

The first assertion (Rule 1) hypothesizes that if the values of the variables Sj are xj for all values of j,
and the conditions Ci and Ti are true, then after the next value change of any variable in the simulation
model, the values of Sj are either still xj (and the conditions Ci and Ti are still true) or the values of Sj are
yj . The second assertion (Rule 2) hypothesizes that if the value of variables Sj are xj , and the conditions Ci

and Ti are true, then eventually the Sj ’s are assigned the values yj . Rule 3 hypothesizes that if the values
of variables Sj are xj and either Ci or Ti (or both) are false, then the values remain xj at least until the
conditions Ci and Ti both become true.

We use these rules to generate assertions for all couplings in the MRP.
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program MRP
constant N=...; MaxRepairs=...; T=...; λ[1..N]=...; µ[1..N]=...;
declare

t : float
loc : (0.0,0.5,1.0,...,N-1.0,N-0.5)
state[0..N-1] : (up, inrepair, down)
num repairs : integer
endrepair time[0..N-1] : float
arrive time[0..N-1] : float
fail time[0..N-1] : float

initially
‖ t = 0.0 { Clock is set to zero }
‖ loc = 0.5 { technician leaving machine zero}
‖ num repairs = 0 { number of repairs is zero}
‖ 〈 ‖ m :: state[m]=up 〉 { all machines up }
‖ 〈 ‖ m :: fail time[m] = t + Head(λ[m]) 〉 { initial machine failures scheduled }
‖ 〈 ‖ m :: endrepair time[m] = ∞ 〉 { no end repairs scheduled }
‖ 〈 ‖ m :: arrive time[m] = t + T if m = 1 ~ { arrive time set for machine 1; others undefined }

∞ if m �= 1 〉

assign

{Implementation of Π1: end of repair }
2 〈 ‖ m :: state[m] := up,

num repairs := num repairs + 1,
fail time[m] := t + Head(λ[m]),
endrepair time[m] := ∞ if m.i ∧ t ≥ endrepair time[m] 〉

{Implementation of Π2: at up machine }
2 〈 ‖ m :: loc, arrive time[m] := m ⊕ 0.5, t + T if m.a ∧ m.u 〉

{Implementation of Π3: at down machine }
2 〈 ‖ m :: state[m] := inrepair,

endrepair time[m] := t + Head(µ[m]) if m.a ∧ m.d 〉

{Implementation of Π4: arrival }
2 〈 ‖ m :: loc, arrive time[m] := m, ∞ if m � 1.l ∧ t ≥ arrive time[m] 〉

{Implementation of Π5: failure }
2 〈 ‖ m :: state[m], fail time[m] := down, ∞ if m.u ∧ t ≥ fail time[m] ∧ ¬ m.a 〉

end { MRP }

Figure 10: UNITY Program for Machine Repairman Problem. Variable m is quantified over the range 0 ≤
m < N.
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6.2 Mapping rules for bound couplings

When a vertex participates in more than one coupling the vertex binds the couplings in so far as our ability
to reason about model transitions is concerned. We say that a coupling is bound if any vertex on the tail of
some edge in the coupling belongs to one or more different couplings.

For any CSTS, G, let κ denote a set of couplings such that each coupling in the set is bound to the other
couplings in the set by virtue of common vertices. We shall refer to κ as a binding in G. (Note that for any
CSTS, G, there may be at most L/2 bindings.) Let K be the set containing all bindings {κ1, . . . , κα} in G.
We construct K as follows: select a bound coupling, c1, from C and place it in the set κ1. Let {cβ, . . . , cγ}
denote couplings, other than c1, to which the vertices in κ1 belong. Add these couplings to κ1. We achieve
closure on the set κ1 by repeating this process until no vertex in κ1 belongs to a coupling not also in κ1. If
any bound couplings remain after closure on κ1, place one in the set κ2 and repeat the process. Continue to
create and close sets κi until all bound couplings belong to some κi.

Formally, let κi = { ci1 , . . . , cin } and let the initial and final vertices of edges in cij be labeled (Sij , xij)
and (Sij , yij) respectively. For each binding κi in K, generate two unless conjectures and one leads-to
conjecture as follows.

∨
cij

∈κi

(
Tij ∧Cij ∧ Sij = xij

) ?

unless
∨

cij
∈κi

(
Sij = yij

)
(4)

∨
cij

∈κi

(
Tij ∧ Cij ∧ Sij = xij

) ?�→
∨

cij
∈κi

(
Sij = yij

)
(5)

∨
cij

∈κi

(
¬(Tij ∧ Cij) ∧ Sij = xij

) ?

unless
∨

cij
∈κi

(
Tij ∧ Cij ∧ Sij = xij

)
(6)

Illustrations of bound couplings are given in Figures 11 and 12. An example of the use of the rules for
bound couplings is warranted. Consider the CSTS in Figure 12. There are three couplings and one binding.
C1 contains the two edges coupled by the conditions T1 and C1. C2 contains the two edges coupled by the
conditions T2 and C2, and C3 contains the two edges coupled by the conditions T3 and C3. Applying rule 4
generates:

(T1 ∧ C1 ∧A = xA ∧B = xB) ∨ (T2 ∧ C2 ∧B = xB ∧ C = xC) ∨

(T3 ∧ C3 ∧ C = xC ∧D = xD)
?

unless (A = yA ∧B = yB) ∨
(B = zB ∧ C = yC) ∨ (C = zC ∧D = yD)

Consider again the MRP CSTS (Figure 9). Figure 13 lists the unless conjectures corresponding to
Rule 1. Figure 14 contains the leads-to conjectures corresponding to Rule 2, and Figure 15 contains the
unless conjectures generated by Rule 3. Appendix B contains an example proof and some related theorems.

7 Superposing Time Flow Mechanisms

In this section we explore how different time flow mechanisms (TFMs) may be added to a UNITY program
equivalent to a CSTS representing a simulation model, also called the underlying simulation program (e.g.,
Figure 10).

To specify a simulation model, the assumption that simulation time (t) advances is sufficient. To im-
plement a simulation, however, one must prescribe a means by which t increases. Further, to prove some
properties we must demonstrate that the model specification permits time to advance. We consider two
general categories of time flow mechanisms: fixed time increment (FTI) and time of next event (TNE).
Variations of the two types of TFMs are discussed in [16]. We add time flow to UNITY specifications via
superposition. To simplify the presentation, we do not address the issue of simultaneous events.1

1For an historical perspective on handling simultaneous events in simulation refer to [21]. Some issues involving simultaneous
events and parallel simulation are presented in [6, 28].
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Π1 : t ≥ m.endrepair time ∧ m.i ∧ m.fail time = ϕ ∧ num repairs = k ∧ m.endrepair time = ϕ′

?

unless m.u ∧ m.fail time = t + Head(m.λ) ∧ num repairs = k + 1 ∧ m.endrepair time = ∞

Π2 : m.a ∧ m.u ∧ m⊕1.arrive time = ϕ
?

unless m.l ∧ m⊕1.arrive time = t + T

Π3 : m.a ∧ m.d ∧ m.endrepair time = ϕ
?

unless m.i ∧ m.endrepair time = t + Head(m.µ)

Π4 : t ≥ m.arrive time ∧ m�1.l ∧ m.arrive time = ϕ
?

unless m.a ∧ m.arrive time = ∞

Π5 : t ≥ m.fail time ∧ ¬m.a ∧ m.u ∧ m.fail time = ϕ
?

unless m.d ∧ m.fail time = ∞

Figure 13: unless Conjectures for MRP from Rule 1.

Π1 : t ≥ m.endrepair time ∧ m.i ∧ m.fail time = ϕ ∧ num repairs = k ∧ m.endrepair time = ϕ′

?
→ m.u ∧ m.fail time = t + Head(m.λ) ∧ num repairs = k + 1 ∧ m.endrepair time = ∞
Π2 : m.a ∧ m.u ∧ m⊕1.arrive time = ϕ

?
→ m.l ∧ m⊕1.arrive time = t + T

Π3 : m.a ∧ m.d ∧ m.endrepair time = ϕ
?
→ m.i ∧ m.endrepair time = t + Head(m.µ)

Π4 : t ≥ m.arrive time ∧ m�1.l ∧ m.arrive time = ϕ
?
→ m.a ∧ m.arrive time = ∞

Π5 : t ≥ m.fail time ∧ ¬m.a ∧ m.u ∧ m.fail time = ϕ
?
→ m.d ∧ m.fail time = ∞

Figure 14: leads-to Conjectures for MRP from Rule 2.

Π1 : t < m.endrepair time ∧ m.i ∧ m.fail time = ϕ ∧ numrepairs = k ∧ m.endrepair time = ϕ′

?

unless t ≥ m.endrepair time ∧ m.i ∧ m.fail time = ϕ ∧ num repairs = k ∧ m.endrepair time = ϕ′

Π2 : ¬m.u ∧ m.a ∧ m⊕1.arrive time = ϕ
?

unless m.u ∧ m.a ∧ m⊕1.arrive time = ϕ

Π3 : ¬m.a ∧ m.d ∧ m.endrepair time = ϕ
?

unless m.a ∧ m.d ∧ m.endrepair time = ϕ

Π4 : t < m.arrive time ∧ m�1.l ∧ m.arrive time = ϕ
?

unless t ≥ m.arrive time ∧ m�1.l ∧
m.arrive time = ϕ

Π5 : ¬(t ≥ m.fail time ∧ ¬ m.a) ∧ m.u ∧ m.fail time = ϕ
?

unless t ≥ m.fail time ∧ ¬ m.a ∧
m.u ∧ m.fail time = ϕ

Figure 15: unless Conjectures for MRP from Rule 3.
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program FTI TFM
constant ∆=. . .
declare A[L-1] : integer
initially 〈i : 1 ≤ i < L :: A[i] = 0〉
transform

each statement “s if b” in the underlying program to

si if b ‖ A[i] := 2 if b ∧A[i] = 0 ∼ 1 if¬b ∧A[i] = 0

where i is the lexical statement number of s.

add to always section

atFP = 〈∧i : 1 ≤ i < L :: A[i] = 1〉
startNewPhase = 〈∧i : 1 ≤ i < L :: A[i] �= 0〉

add to assign section

2〈〈‖ i :: 1 ≤ i < L :: A[i] := 0 if atFP ∨ startNewPhase〉
‖ t := t+ ∆ if atFP 〉

end { FTI TFM }

Figure 16: Specification of Fixed Time Increment Time Flow Mechanism

7.1 Superposing fixed time increment

Let ∆ denote a constant floating point value of simulation time, representing a positive nonzero time incre-
ment. The FTI algorithm consists of iterating two phases:

1. Execute all statements for the current value of t until the underlying simulation program reaches a
fixed point (i.e., execution of any underlying program statement does not modify any variable declared
in the underlying program).

2. Set t to t+ ∆.

The underlying program is composed with program FTI TFM in Figure 16 using superposition (defined
in Section 2.4). FTI TFM detects when the underlying simulation program reaches fixed point as follows.
Recall from Section 5 that L− 1 denotes the number of statements in the underlying simulation program,
because L−1 is the number of non-initialization couplings in the CSTS (L−1 = 5N in Figure 10). Number
the underlying program statements by the integers 1, 2, . . . , L. Add array A[1..L− 1]. Initially, all elements
of array A are zero.

Array A partitions execution of underlying program statements into a set of phases such that every
statement is executed at least once in each phase. Array A is initialized to zeroes each time a phase starts.
The phase completes when all elements of A are nonzero. At the completion of a phase, each element of
array A indicates what happened during execution of the corresponding program statement. A[i] is 1 if the
statement execution was the identity assignment, and 2 otherwise. If array A contains all one’s, then the
underlying program is in fixed point; this is the condition for a phase to end and for t to advance.

7.2 Superposing time-of-next-event

As with FTI, TNE requires detecting when the underlying program reaches fixed point before advancing t.
The difference between the two TFM implementations is that in FTI t is incremented by a fixed value and
in TNE t is incremented to the time value of the most imminent model state change, that is the minimum
value contained in all model time variables. The superposition for TNE is obtained by changing the name
“FTI TFM” to “TNE TFM,” removing the constant declaration of ∆, and the assignment “t := t + ∆” to
“t := 〈min :: 〈time var list〉〉” in Figure 16. The superposed program MRP TNE is given in Figure 17.
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program MRP
constant N=...; MaxRepairs=...; T=...; λ[1..N]=...; µ[1..N]=...;
declare
A[5] : integer;
t : float
loc : (0.0,0.5,1.0,...,N-1.0,N-0.5)
state[0..N-1] : (up, inrepair, down)
num repairs : integer
endrepair time[0..N-1] : float
arrive time[0..N-1] : float
fail time[0..N-1] : float

initially
‖ 〈i : 1 ≤ i ≤ 5 :: A[i] = 0〉
‖ t = 0.0 { Clock is set to zero }
‖ loc = 0.5 { technician leaving machine zero}
‖ num repairs = 0 { number of repairs is zero}
‖ 〈 ‖ m :: state[m]=up 〉 { all machines up }
‖ 〈 ‖ m :: fail time[m] = t + Head(λ[m]) 〉 { initial machine failures scheduled }
‖ 〈 ‖ m :: endrepair time[m] = ∞ 〉 { no end repairs scheduled }
‖ 〈 ‖ m :: arrive time[m] = t + T if m = 1 ~ { arrive time set for machine 1; others undefined }

∞ if m �= 1 〉
always
atFP = 〈i : 1 ≤ 1 ≤ 5 :: A[i] = 1〉
startNewPhase = 〈∧i : 1 ≤ i ≤ 5 :: A[i] �= 0〉

assign

{Implementation of Π1: end of repair }
2 〈 ‖ m :: state[m] := up,

num repairs := num repairs + 1,
fail time[m] := t + Head(λ[m]),
endrepair time[m] := ∞ if t ≥ endrepair time[m]

‖ A[1] := 2, if t ≥ endrepair time ∧ A[1] = 0 ~

1 if t < endrepair time ∧ A[1] = 0 〉

{Implementation of Π2: at up machine }
2 〈 ‖ m :: loc, arrive time[m] := m ⊕ 0.5, t + T if m.a ∧ m.u

‖ A[2] := 2, if m.a ∧ m.u ∧ A[2] = 0 ~

1 if ¬(m.a ∧ m.u) ∧ A[2] = 0 〉

{Implementation of Π3: at down machine }
2 〈 ‖ m :: state[m] := inrepair,

endrepair time[m] := t + Head(µ[m]) if m.a ∧ m.d
‖ A[3] := 2, if m.a ∧ m.d ∧ A[3] = 0 ~

1 if ¬(m.a ∧ m.d) ∧ A[3] = 0 〉

{Implementation of Π4: arrival }
2 〈 ‖ m :: loc, arrive time[m] := m, ∞ if t ≥ arrive time[m]

‖ A[4] := 2, if t ≥ arrive time[m] ∧ A[4] = 0 ~

1 if t < arrive time[m] ∧ A[4] = 0 〉

{Implementation of Π5: failure }
2 〈 ‖ m :: state[m], fail time[m] := down, ∞ if t ≥ fail time[m] ∧ ¬ m.a

‖ A[5] := 2, if t ≥ fail time[m] ∧ A[5] = 0 ~

1 if t < fail time[m] ∧ A[5] = 0 〉
{Implementation of TFM }
2 〈〈‖ i : 1 ≤ i ≤ 5 :: A[i] := 0 if atFP ∨ startNewPhase 〉

‖ t := 〈 min : 1 ≤ m ≤ N :: endrepair time[m], arrive time[m], fail time[m] 〉 〉

end { MRP }

Figure 17: UNITY Program for Machine Repairman Problem. Variable m is quantified over the range 0 ≤
m < N.
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8 Mapping UNITY Simulation Programs to Computer Archi-
tectures

The problem of mapping programs to architectures in a way that minimizes the time and space required for
program execution is a difficult open problem. We propose one mapping of CSTS’s to a particular target
architecture, to illustrate the mapping process. The graph comprising a CSTS provides a convenient form to
analyze a simulation model in devising mappings. The mapping problem can be viewed as a graph clustering
problem: partition the couplings in a CSTS to minimize the number of state variables read or written by
multiple partitions, and assign each partition to a processor. The target architecture selected is a distributed
memory architecture, in which each processor has a private memory and processors communicate by sending
messages. UNITY sequences represent the communication channels over which inter-processor messages are
sent. Appending to and reading or removing from a sequence corresponds to sending and receiving messages,
respectively.

An allocation graph for CSTS G = (S,Θ, V, E, C) consists of a set of vertices, VA, and a set of directed
arcs, AA. Each vertex in VA represents one or more partitions Ci ∈ C. A vertex in VA is said to represent a
state variable S ∈ S if the coupling partition represented by VA contains a coupling whose edge set includes
an edge whose initial vertex is labeled by state variable S. Each state variable S ∈ S is represented by
exactly one vertex in VA. For all v1, v2 ∈ VA, AA contains an arc directed from v1 to v2 if and only if a
state variable represented by v1 appears in a condition of a coupling represented by v2. The arc is said
to be associated with the set all state variables represented by v1 that appear in a condition of a coupling
represented by v2.

Recall from Section 2.5 that an architecture mapping specifies (1) a mapping of each assignment statement
to one or more processors, (2) a schedule for executing assignments (e.g., control flow), and (3) a mapping
of program variables to processors. CSTS G is mapped to a distributed memory architecture as follows.

For (1): Assign each vertex in VA to a processor. In particular, assigning vertex v ∈ VA to processor means
that the processor executes the UNITY assignment statements corresponding to couplings represented
by v. The issue of how many processors to use and which partitions should be mapped to the same
processor affect the program efficiency. Allocate the statement that modifies t in program FTI TFM
or TNE TFM to any processor.

For (2): Statements assigned to a processor are executed iteratively.

For (3): For each state variable S ∈ S, assign S to the memory module private to the processor representing
the vertex in VA representing S. For each state variable S associated with an arc in AA, add a sequence
(e.g., a stream of messages) representing variable S. The sequence is initialized with the initial value
of the state variable. Each time the processor assigned to the initial vertex of the arc modifies S, it
appends the new value to the sequence. Each time the processor assigned to the final vertex tests a
condition containing S, the processor removes all but the last value from the sequence, and replaces
occurrences of S in the condition by a read of the value of S at the head of the sequence.

Assign, for all i, tna[i] to the processor which is assigned coupling ci. Assign t to the processor that
modifies t; let PR denote this processor. Add a pair of sequences, one in each direction, between PR
and each processor besides PR; sequences from PR (respectively, other processors) to other processors
(respectively, PR) will be referred to as outbound (inbound) sequences. Each time t is modified, PR
appends the new value to all outbound sequences. Each time a processor other than PR modifies
tna[i], that processor appends the new value to the inbound sequence associated with tna[i]. Whenever
PR modifies t, it first removes all but the last value from each inbound sequence, and then replaces
occurrences of tna[i] by the value at the head of the corresponding inbound sequence.
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9 Mapping UNITY Simulation Programs to Simulation Proto-
cols

We exemplify mapping the simulation program resulting from Section 8 to the Time Warp optimistic pro-
tocol [14]. Similar mappings can be devised for other parallel simulation protocols.

Time warp requires the time-of-next-event time flow mechanism (Section 7.2). Let pr denote the number
of processors, and let the processors be numbered PR1,PR2, . . . ,PRi, . . . ,PRpr. The single variable t is
replaced by t1, t2, . . . , tpr, where ti is assigned to processor PRi. Variable ti represents the local virtual
time of processor PRi, and is updated by a superposition similar to the one specified in Section 7.2, except
that the superposition is done with respect to the assignment statements mapped to a single processor rather
than with respect to all statements in the simulation model.

Each time a processor PRi appends a value u to a sequence, it instead appends an ordered pair (ti, u).
The first value in the pair is the message timestamp used by the time warp protocol that triggers rollbacks.

Finally, it is necessary to superpose a program which will periodically save the value of all state variables
in S. This is mostly straightforward, and hence is not illustrated.

10 UNITY-Based Methodology

We next propose a simulation program development methodology using the mechanism of the preceding
sections. In terms of Balci and Nance’s simulation life cycle [2], assume that the “system and objectives
definition” and “conceptual model” in the life cycle have been completed. We propose using a CSTS to
represent the “communicative model” in the methodology. In principle it is possible to use the methodology
with other formal representations of a communicative model, such as a single CSTS or a Petri net, by stating
the formal semantics of the representation in UNITY (cf. Section 6) and stating rules to generate a UNITY
program (cf. Section 5). The methodology itself also applies if English is used as the specification language,
although one must generate the UNITY assertions and program by hand.

We propose the following methodology:

Step 1: variable definitions Define a variable corresponding to each simulation model attribute. Type
the variable as a time variable if it assumes values that represent points of simulation time; otherwise type
the variable as a state variable. Describe all transitions made between values of variables by identifying the
time and state conditions under which each value change may take place. Identify the initial value of each
variable. We propose that the result of this step be a CSTS as discussed in Section 3.

Verify that the CSTS matches the conceptual model. Verify that the list of constraints is complete (i.e.,
each arc corresponds to a valid transition, and vice versa).

Step 2: program generation Derive a UNITY simulation program from the CSTS using the rules in
Section 5. The only verification required is to ensure that the rules have been properly applied.

Step 3: assertion generation Formalize the CSTS in UNITY, using the rules stated in Section 6. The
only verification required is to insure that the UNITY assertions have been correctly generated.

Step 4: time flow superposition Refine the simulation program by mapping the program to a particular
time flow mechanism as described in Section 7.

Overall verification of steps one to four Verify that the CSTS and the UNITY specification agree in
the following manner: State a set of properties that the communicative model implies, and use UNITY’s
proof system to show that the specification (i.e., the UNITY assertions of Step 2) implies these properties.

Step 5: architecture refinement Refine the simulation program by mapping the program resulting from
Step 4 to a particular sequential or parallel computer architecture as described in Section 8.
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Step 6: protocol refinement Refine the simulation program by mapping the program resulting from
Step 5 to a particular sequential or parallel simulation protocol as described in Section 9.

The specification may be verified by stating additional properties and using UNITY’s proof system to
formally show that the specification implies these properties. Inability to prove the properties may imply
that the specification is incomplete or incorrect, or that the properties themselves do not hold for the
system. Of course, Gödel’s Theorem implies that some true properties may not be provable. We also
observe that carrying out any such proof does not guarantee the correctness of the specification—you are
inevitably confronted with the recursive problem of proving the Theorem prover correct—but does increase
our confidence in the specification.

11 Conclusions

This paper presents a methodology to automate the construction of a simulation program from a communica-
tive model derived from UNITY. UNITY has been illustrated to have significant potential in the development
of parallel (and distributed) programs and recent work in enhancing the analyzability of fairness properties in
UNITY [27] and extending UNITY to use in other domains [24] is promising. In our approach, a simulation
model is specified as a coupled state transition system (CSTS), then mapped (mechanically) to a program.
The program is then refined to a program suitable for a target sequential or parallel computer architecture.
The refinement can be done mechanically, but further optimization by hand may be required to obtain a
suitably efficient implementation. The methodology addresses formal verification as follows. A CSTS is (me-
chanically) mapped to a set of conjectures written as UNITY assertions. Proofs of conjectures (at present,
done by hand) are carried out, and the conjectures which can be proved form the formal specification of the
communicative model. The communicative model can be formally verified by stating additional properties
that the CSTS should possess as UNITY assertions, and then (by hand) proving the assertion from the
specification.

The proposed methodology should ultimately be incorporated into a simulation support environment
which uses a higher level specification than the CSTS (e.g. an object-oriented specification) by mapping
that specification to a CSTS. The nature of these higher level specification forms is an open problem. Other
open problems which remain are the following:

Automating proofs. Proofs of conjectures to obtain the UNITY specification of a CSTS are generally easy
to mechanize, because the proofs just require application of the rule to verify assignment statements. In
contrast, proofs of properties about the specification must, at present, be done by hand. Automation is
difficult because proving properties always requires identifying an order of application for UNITY theorems
and sometimes requires formulation of invariants as well as metrics for induction. However, many proofs can
be checked automatically using Goldschlag’s system [12]. Our experience in proving the properties from the
MRP and other examples is that UNITY proofs are fairly mechanical, but can be time consuming. Following
are some specific examples of where the proofs are time consuming.

(a) Applying induction: A key to the proof that down machines are eventually repaired (not illustrated) is
establishing by an induction proof that after a machine goes down, the technician keeps getting “closer”
to the failed machine, until eventually he is at the failed machine. Induction is required whenever we
want to draw a conclusion about a sequence of state transitions, given a specification describing only
single step transitions, such as the assertions generated with our approach provide. Figuring out how
to fit the induction theorem to this intuition did require some time on the part of the authors.

(b) Constructing chain of deductions: In general the authors spent much of their time playing with the more
than thirty theorems in the UNITY book to construct the formal chain of deductions required for each
proof[5, Ch. 3]. This process is somewhat analogous to what an undergraduate student does in a
calculus class, as he browses through a table of integrals and a list of trigonometric identities in trying
to symbolically integrate a function. However a theorem proving system might alleviate this problem.

(c) Devising invariants: Proofs of code generally require invariants to be formulated, which takes some
creativity. This is analogous to integrating a function by guessing the antiderivative.
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As our experience with UNITY grows, we expect the time required for items (a) and (b) listed above
to decrease.

Reconciling proofs and graph-based analysis. Automated assistance in the verification and validation of
simulation models through graph-based analysis techniques has been demonstrated, for example, in [18, 19].
Can we define the relationship between what can be proved and what can be derived graphically? Describing
the reduction of the CSTS to a Simulation Graph or Petri net seems plausible. Many of the questions one
would like to ask about a simulation model specification have been shown to be NP-hard or worse using
other formalisms [20]. How do such limitations manifest themselves in our proof system?

Determining efficient mappings to parallel architectures and simulation protocols. Sections 8 and 9 pro-
vided one possible mapping to a distributed memory architecture and time warp. A general method of
mapping the graph implied by a CSTS to a target architecture is required. Furthermore, mapping a simula-
tion specification to a time-flow mechanism, a parallel simulation protocol (e.g., conservative-synchronous,
conservative-asynchronous, optimistic), and a target machine architecture are intimately connected. All three
correspond to specifying constraints on when to execute statements in a UNITY program. The methodology
proposed here first maps a program to a time flow mechanism, then to an architecture, and finally to a sim-
ulation protocol; perhaps all three must be done jointly to obtain an optimal program in terms of execution
time.

Efficient parallel execution of a simulation model implies consideration of the constraints imposed by each
combination of computer architecture, time flow mechanism, and parallel simulation protocol, which leads
to an enormous design space. An additional complication is that many of these constraints are problem
as well as input data dependent; thus a correct temporal ordering of events cannot be predicted before
execution. This exposes one reason why parallel discrete-event simulation programming is a fundamentally
hard problem.
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A Notation

c, ci, c
loc
i,m, c

state
i,m coupling

C,Ci condition
C set of couplings
Cond(Ci) {C|(E′, T, C) ∈ Ci}
ei edge
E,E′, E′

i set of edges in coupled state transition system
EA set of edges in allocation graph
ESz set of all execution sequences of a program with time formulas equal to zero
ESa set of all execution sequences of a program with arbitrary time formulas
G coupled state transition system
loc state variable denoting location of technician
L ||C||
M number of partitions of coupling set C in rule II
ME metric used in UNITY induction proof
m machine
m.state state variable denoting state of machine m
m.d,m.i,m.u predicates denoting m.state=down, inrepair, and up, respectively
m.a,m.l predicates denoting loc = m and loc = m⊕ 0.5, respectively
N number of machines in machine repairman problem
p, q, q′ assertion
P,Q,R, S, Si state variable
PG program equivalent to coupled state transition system G
pr number of processors
PR,PRi processor
r number of edges in a coupling
s, si statement
Ŝ domain of state variable S
S set of state variables
T, Ti time formula
t program variable containing current simulation time
tna[i] simulation time of next assignment corresponding to coupling i
u, w, w′, x, x′, x′′, xi, y, y

′, y′′, yi, z, z
′state variable value

v, vi vertices
V set of vertices in coupled state transition system
VA set of vertices in allocation graph
W any set
∆ simulation time increment for fixed time increment time flow mechanism
θ initial value formula
λ machine failure rate
µ machine repair time
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B Applying the UNITY Proof System

AXIOM 1. All time variables are set with non-zero increments to t.

Axiom 1 proscribes one event executing at a given time, t, from scheduling another event at that same time.
Our assertion is that any model so formulated can be modified to make this a single event.

Therefore if any coupling that contains a time condition (i.e. the transitions comprising the coupling are fully
or partially determined) is enabled at time t, executing the coupling (performing the transitions described by
the coupling) cannot enable any other coupling (including itself) containing a time variable in the condition
for the same time t; it may only enable state-based (contingent) couplings

Definitions:

1. We say that a coupling is enabled if the boolean-valued functions T and C labeling its transitions are
both true.

2. A coupling is executed if the transitions defined by the coupling are taken.

3. If executing a coupling enables another coupling, this is a sequence of enabled couplings of length two.

Theorem 1: In the MRP there does not exist an infinite length sequence of enabled couplings.

Proof (by contradiction). Suppose there exists an infinite length sequence of enabled couplings in the MRP.
By Axiom 1 this sequence is composed of couplings containing only state conditions. Within the MRP, the
only contingent couplings are Π2 (at an up machine) and Π3 (at a down machine). Therefore this infinite
length sequence must take the form:

. . . ,Π2,Π3,Π2,Π3, . . .

Executing Π2 causes m.l to hold. The condition on Π3 is m.a. Therefore the sequence Π2,Π3,Π2, . . . cannot
be generated in the MRP. This is a contradiction of our assumption. Therefore, no infinite length sequence
of enabled couplings exists in the MRP. 2
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Theorem 2: In the MRPTNE t assumes all finite values of any time variable.

Proof. Let v be a time variable in the MRPTNE . Assume v is set at time t to the value τ . By Axiom 1 τ >
t. By Theorem 1 there is no infinite length sequence of enabled couplings in MRP. Therefore the conditions
for updating t are always met after some finite number of coupling executions. If τ is the minimum of all
values in all time variables of MRP, the proof is complete. If not, then by Theorem 1 t will again be updated
and will eventually assume the value τ . 2

Theorem 3: In the MRPFTI t advances beyond all finite values of any time variable.

Proof. Let v be a time variable in the MRPFTI . Assume v is set at time t to the value τ . By Axiom 1 τ >
t. By Theorem 1 there is no infinite length sequence of enabled couplings in MRP. Therefore the conditions
for updating t are always met after some finite number of coupling executions. If τ is less than t + ∆, the
proof is complete. If not, then by Theorem 1 t will again be updated and will eventually assume or surpass
the value τ . 2

Caveat. While it is theoretically possible that infinitely many assignments to time variables subsequent to
the assignment of v = τ could generate values less than τ and thus t would never assume or surpass τ . This
is a practical impossibility due to the resolution of a real valued simulation clock on any digital computer.

Deductions. The following states are mutually exclusive:

1. m.u, m.d, m.i

2. m.a, m.l

The following can be deduced from the couplings:

3. m.u ⇔ m.endrepair time = ∞ ⇔ m.fail time <∞

4. m.d ⇔ m.fail time = ∞

5. m.i ⇔ m.endrepair time <∞

6. m.l ⇔ m⊕1.arrive time <∞

7. m.a ⇔ m.arrive time = ∞

8. m.i ⇔ m.a
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Assertion:
t ≥ endrepair time ∧ m.i ∧ m.fail time = ϕ ∧ num repairs = k ∧ m.endrepair time = ϕ′

unless m.u ∧ m.fail time = t + Head(m.λ) ∧ num repairs = k + 1 ∧ m.endrepair time = ∞

Proof:
Let Φ denote

t ≥ endrepair time ∧ m.i ∧ m.fail time = ϕ ∧ num repairs = k ∧ m.endrepair time = ϕ′

Let Φ′ denote
m.u ∧ m.fail time = t + Head(m.λ) ∧ num repairs = k + 1 ∧ m.endrepair time = ∞

Show 〈∀s : s in MRPTNE :: {Φ ∧ Φ′} s{Φ ∧ Φ′}〉

Consider any program state in which Φ holds.

Executing statement Π1: causes Φ′ to hold.

Executing statement Π2: is a no-op since m.i ⇔ ¬ m.u (Deduction 1).

Executing statement Π3: is a no-op since m.i ⇔ ¬ m.d (Deduction 1).

Executing statement Π4: is a no-op since m.i ⇔ m.a ⇔ m.arrive time = ∞ (Deductions 7,8).

Executing statement Π5: is a no-op since m.i ⇔ ¬ m.u ⇔ m.fail time = ∞ (Deductions 1,3).

Executing statement TFM: has no effect on Φ.

Therefore the assertion holds.

Further since only Π1 establishes Φ′, Φ ensures Φ′ and by implication, Φ �→ Φ′. 2
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